代表性学术成果:
代表科研项目 [1].国家重点研发计划课题, 2022YFD2001701,水产养殖工厂养殖模型及智能管控平台研发,2022-10至2026-09, 360万元,在研,主持 [2].国家自然科学基金面上项目,32373184融合图像和声音特征的虹鳟鱼摄食强度量化方法研究2024.01-2027.12,50万元,在研,主持 [3].北京市自然科学基金面上项目, 6212007,基于群体摄食行为反馈的鳟鱼投饵速率实时调控策略研究, 2021-01至2023-12, 20万元,在研,主持 [4].广东省重点领域研发计划项目, 2021B0202070001,陆基池塘智慧养殖场关键技术研究与示范, 2020-09至2023-09, 50万元,在研,参与 [5].国家重点研发计划子课题, 2020YFD0900105,传统池塘养殖水质智能化管控及精准投喂技术优化研究, 2020-10至2022-12, 110万元,结题,主持 [6].北京市农林科学院青年基金, QNJJ202014,虹鳟鱼行为量化分析及摄食强度表征模型研究, 2020-01至2022-12, 30万元,结题,主持 [7].北京市优秀人才培养项目, 2017000057592G125,基于机器视觉的京津冀名优特色鱼类智能投喂控制方法研究, 2017-10至2018-12, 15万元,结题,主持
科技奖励: [1].上海市科技进步二等奖,水产精细养殖物联网及数字化技术研究与应用, 2017,排名9; [2].中国水产学会范蠡科学技术奖科技进步二等奖,水产精细养殖物联网及数字化技术研究与应用, 2019,排名2
以第一或通讯作者发表的代表性论文: [1].Zhao, Zhenxi; Liu, Yang; Sun, Xudong; Liu, Jintao; Yang, Xinting;Zhou, Chao; Composited FishNet: Fish Detection and Species Recognition From Low-Quality Underwater Videos, IEEE Transactions on Image Processing, 2021, 30: 4719-4734.(CCF-A,IF11.041) [2].Z. Zhao, X. Yang, J. Liu, C. Zhou andC. Zhao, GCVC: Graph Convolution Vector Distribution Calibration for Fish Group Activity Recognition, IEEE Transactions on Multimedia, doi: 10.1109/TMM.2023.3287339. [3].Yang, Xinting; Zhang, Song; Liu, Jintao; Gao, Qinfeng; Dong, Shuanglin;Zhou, Chao; Deep learning for smart fish farming: applications, opportunities and challenges, Reviews in Aquaculture, 2021.01, 13(1): 66-90(ESI高被引论文,IF10. 618) [4].Zeng, Yuhao; Yang, Xinting; Pan, Liang; Zhu, Wentao; Wang Dinghong; Zhao Zhengxi; Liu, Jintao; Sun, Chuanheng;Zhou, Chao; Fish school feeding behavior quantification using acoustic signal and improved Swin Transformer, Computers and Electronics in Agriculture, 2023.01, 204: 107580 [5].Hu Xuelong, Liu Yang, Zhao Zhengxi, Liu Jintao, Yang Xinting, Sun Chuanheng, Chen Shuhan, Li Bin, Zhou Chao. Real-time detection of uneaten feed pellets in underwater images for aquaculture using an improved YOLO-V4 network[J]. Computers and Electronics in Agriculture, 2021, 185: 106135.(ESI高被引论文,(COMPAG期刊2021年Superior PaperAwards,2021年度发文602篇,4篇获奖论文之一) [6].Zhou, Chao; Xu, Daming; Chen, Lan; Zhang, Song; Sun, Chuanheng; Yang, Xinting; Wang, Yanbo ; Evaluation of fish feeding intensity in aquaculture using a convolutional neural network and machine vision, Aquaculture, 2019, 507: 457-465 [7].Zhou, Chao; Lin, Kai; Xu, Daming; Chen, Lan; Guo, Qiang; Sun, Chuanheng; Yang, Xinting ; Near infrared computer vision and neuro-fuzzy model-based feeding decision system for fish in aquaculture, Computers and Electronics in Agriculture, 2018, 146: 114-124 [8].Feng Shuangxing, Yang Xinting, Liu Yang, Zhao Zhengxi, Liu Jintao, Yan Yujie,Zhou Chao. Fish feeding intensity quantification using machine vision and a lightweight 3D ResNet-GloRe network[J]. Aquacultural Engineering, 2022, 98: 102244. [9].胡学龙,朱文韬,杨信廷,等.基于水质-声音-视觉融合的循环水养殖鱼类摄食强度识别[J].农业工程学报,2023,39(10):141-150 授权发明专利:
[1].周超;杨信廷;孙传恒;徐大明;吝凯;郭强;陈澜;一种智能投喂控制方法及装置, 2020-12-29, ZL201810073204.6 [2].周超;杨信廷;孙传恒;杜晓伟;李文勇;鱼类养殖投饲控制系统及方法, 2016-3-30, ZL201310436162.5 [3].周超;杨信廷;孙传恒;杜晓伟;李文勇;一种用于鱼类养殖的投喂控制系统及方法, 2014-11-19,ZL 201310385274.2 [4].周超,朱文韬,杨信廷,孙传恒,刘锦涛;鱼群摄食强度识别方法、装置、系统及投饵机,2023-05-26,ZL 202310181994.0 [5].周超,赵振锡,杨信廷,刘锦涛,冯双星,孙传恒一种水下鱼类群组活动强度识别方法及装置,2023-04-28,ZL 202210028850.7 [6].周超,冯双星,杨信廷,孙传恒,赵振锡,刘锦涛,鱼群的摄食强度分级方法、装置及智能调速投饲机2023-03-31,ZL 202111642230.4 [7].周超,杨信廷,孙传恒,徐大明,吝凯,陈彩文,郭强,一种水产养殖鱼群聚集指数计算装置及计算方法吝凯, 2023-08-04,ZL 201611229814.8 |